Sure, I am sharing both wall time and CPU time for benzene dimer single-point calculation with B3LYP/def2-QZVPPD. I have run five such instances, all are given below.
1. total cpu-time : 20 hours 54 minutes and 32 seconds
total wall-time : 23 minutes and 42 seconds
2. total cpu-time : 1 days 7 hours 27 minutes and 4 seconds
total wall-time : 31 minutes and 35 seconds
3. total cpu-time : 22 hours 50 minutes and 16 seconds
total wall-time : 25 minutes and 9 seconds
4. total cpu-time : 21 hours 10 minutes and 33 seconds
total wall-time : 24 minutes and 16 seconds
5. total cpu-time : 21 hours 4 minutes and 11 seconds
total wall-time : 23 minutes and 52 seconds
The control file and ridft.out file for the first instances is also provided for your convenience.
control:
$title
$symmetry c1
$user-defined bonds file=coord
$coord file=coord
$optimize
internal off
redundant off
cartesian on
global off
basis off
$atoms
c 1,3,5,7,9,11,13,15,17,19,21,23 \
basis =c def2-QZVPPD \
jbas =c universal
h 2,4,6,8,10,12,14,16,18,20,22,24 \
basis =h def2-QZVPPD \
jbas =h universal
$basis file=basis
$scfmo file=mos
$closed shells
a 1-42 ( 2 )
$scfiterlimit 30
$thize 0.10000000E-04
$thime 5
$scfdamp start=0.300 step=0.050 min=0.100
$scfdump
$scfintunit
unit=30 size=0 file=twoint
$scfdiis
$maxcor 500 MiB per_core
$scforbitalshift automatic=.1
$drvopt
cartesian on
basis off
global off
hessian on
dipole on
nuclear polarizability
$interconversion off
qconv=1.d-7
maxiter=25
$coordinateupdate
dqmax=0.3
interpolate on
statistics 5
$forceupdate
ahlrichs numgeo=0 mingeo=3 maxgeo=4 modus=<g|dq> dynamic fail=0.3
threig=0.005 reseig=0.005 thrbig=3.0 scale=1.00 damping=0.0
$forceinit on
diag=default
$energy file=energy
$grad file=gradient
$forceapprox file=forceapprox
$dft
functional b3-lyp
gridsize m5
$scfconv 7
$ricore 500
$rij
$jbas file=auxbasis
$rundimensions
natoms=24
nbf(CAO)=1404
nbf(AO)=1152
$last step ridft
$orbital_max_rnorm 0.37825343447967E-02
$last SCF energy change = -464.39460
$subenergy Etot E1 Ej Ex Ec En
-464.3945967316 -1873.134408000 835.7340698417 -52.77879696369 -3.277199147521 629.0617375378
$charge from ridft
0.000 (not to be modified here)
$dipole from ridft
x 0.00001818366549 y 0.00000086972861 z -0.00020512736756 a.u.
| dipole | = 0.0005234349 debye
$end
The ridft.out is,
OpenMP run-time library returned nthreads = 64
ridft (mozart) : TURBOMOLE rev. V7.5.0 compiled 17 Jun 2020 at 09:15:30
Copyright (C) 2020 TURBOMOLE GmbH, Karlsruhe
2022-01-31 16:03:58.238
r i d f t
DFT program with RI approximation
for coulomb part
References:
TURBOMOLE:
R. Ahlrichs, M. Baer, M. Haeser, H. Horn, and
C. Koelmel
Electronic structure calculations on workstation
computers: the program system TURBOMOLE
Chem. Phys. Lett. 162: 165 (1989)
Density Functional:
O. Treutler and R. Ahlrichs
Efficient Molecular Numerical Integration Schemes
J. Chem. Phys. 102: 346 (1995)
Parallel Version:
Performance of parallel TURBOMOLE for Density
Functional Calculations
M. v. Arnim and R. Ahlrichs
J. Comp. Chem. 19: 1746 (1998)
RI-J Method:
Auxiliary Basis Sets to approximate Coulomb
Potentials
Chem. Phys. Lett. 240: 283 (1995)
K. Eichkorn, O. Treutler, H. Oehm, M. Haeser
and R. Ahlrichs
Chem. Phys. Lett. 242: 652 (1995)
Auxiliary Basis Sets for Main Row Atoms and their
Use to approximate Coulomb Potentials
K. Eichkorn, F. Weigend, O. Treutler and
R. Ahlrichs
Theo. Chem. Acc. 97: 119 (1997)
Accurate Coulomb-fitting basis sets for H to Rn
F. Weigend
Phys. Chem. Chem. Phys. 8: 1057 (2006)
Multipole accelerated RI-J (MARI-J):
Fast evaluation of the Coulomb potential for
electron densities using multipole accelerated
resolution of identity approximation
M. Sierka, A. Hogekamp and R. Ahlrichs
J. Chem. Phys. 118: 9136 (2003)
RI-JK Method:
A fully direct RI-HF algorithm: Implementation,
optimised auxiliary basis sets, demonstration of
accuracy and efficiency
F. Weigend
Phys. Chem. Chem. Phys. 4: 4285 (2002)
Two-component HF and DFT with spin-orbit coupling:
Self-consistent treatment of spin-orbit
interactions with efficient Hartree-Fock and
density functional methods
M. K. Armbruster, F. Weigend, C. van Wüllen and
W. Klopper
Phys. Chem. Chem. Phys. 10: 1748 (2008)
Two-component difference density and DIIS algorithm
Efficient two-component self-consistent field
procedures and gradients: implementation in
TURBOMOLE and application to Au20-
A. Baldes, F. Weigend
Mol. Phys. 111: 2617 (2013)
Relativistic all-electron 2c calculations
An efficient implementation of two-component
relativistic exact-decoupling methods for large
molecules
D. Peng, N. Middendorf, F. Weigend, M. Reiher
J. Chem. Phys. 138: 184105 (2013)
Finite nucleus model and SNSO approximation
Efficient implementation of one- and two-
component analytical energy gradients in exact
two-component theory
Y. J. Franzke, N. Middendorf, F. Weigend
J. Chem. Phys. 148: 104110 (2018)
Grids for all-electron relativistic methods
Error-consistent segmented contracted all-
electron relativistic basis sets of double-
and triple-zeta quality for NMR shielding
constants
Y. J. Franzke, R. Tress, T. M. Pazdera,
F. Weigend
Phys. Chem. Chem. Phys. 21: 166658 (2019)
Seminumerical exchange algorithms
Seminumerical calculation of the Hartree-Fock
exchange matirx: Application to two-component
procedures and efficient evaluation of local
hybrid functionsl
P. Plessow, F. Weigend,
J. Comput. Chem. 33: 810 (2012)
Improved seminumerical algorithms
C. Holzer, in preparation (2020)
OpenMP Shared-Memory Parallelization: 64 CPUs.
By: Christof Holzer and Yannick J. Franzke
+--------------------------------------------------+
| general information about current run |
+--------------------------------------------------+
Becke-3-Parameter hybrid functional: B3-LYP
exchange: 0.8*LDA + 0.72*B88 + 0.2*HF
correlation: 0.19*LDA(VWN) + 0.81*LYP
A Hybrid-DFT calculation using the RI-J approximation will be carried out.
Allocatable memory for RI due to $ricore (MB): 500
+--------------------------------------------------+
| Atomic coordinate, charge and isotop information |
+--------------------------------------------------+
atomic coordinates atom charge isotop
1.34670449 2.11837486 0.11440550 c 6.000 0
2.56594884 3.75375040 0.24138827 h 1.000 0
2.37772093 -0.30094248 0.23476732 c 6.000 0
4.39352684 -0.54254014 0.46627676 h 1.000 0
0.80669567 -2.40850633 0.08059763 c 6.000 0
1.60710747 -4.28671650 0.17905146 h 1.000 0
-1.79444206 -2.09773595 -0.18956522 c 6.000 0
-3.01308458 -3.73461605 -0.30937364 h 1.000 0
-2.82613387 0.32323871 -0.30527773 c 6.000 0
-4.84484732 0.56544602 -0.51722393 h 1.000 0
-1.25445236 2.43140268 -0.15760587 c 6.000 0
-2.05394464 4.31046568 -0.25111840 h 1.000 0
3.68399881 2.09781576 6.80458924 c 6.000 0
4.90257948 3.73466581 6.92506063 h 1.000 0
4.71570069 -0.32320894 6.92084468 c 6.000 0
6.73431915 -0.56537177 7.13390038 h 1.000 0
3.14411094 -2.43138759 6.77221691 c 6.000 0
3.94361950 -4.31044137 6.86604874 h 1.000 0
0.54308895 -2.11838275 6.49874189 c 6.000 0
-0.67597827 -3.75377110 6.37093474 h 1.000 0
-0.48786979 0.30090652 6.37786400 c 6.000 0
-2.50350465 0.54246872 6.14508988 h 1.000 0
1.08301598 2.40848171 6.53295560 c 6.000 0
0.28266995 4.28669002 6.43399267 h 1.000 0
center of nuclear mass : 0.94484663 0.00000451 3.30704123
center of nuclear charge: 0.94484812 0.00000437 3.30703847
+--------------------------------------------------+
| basis set information |
+--------------------------------------------------+
we will work with the 1s 3p 5d 7f 9g ... basis set
...i.e. with spherical basis functions...
type atoms prim cont basis
---------------------------------------------------------------------------
c 12 83 63 def2-QZVPPD [8s4p4d2f1g|16s8p4d2f1g]
h 12 36 33 def2-QZVPPD [4s4p2d1f|7s4p2d1f]
---------------------------------------------------------------------------
total: 24 1428 1152
---------------------------------------------------------------------------
total number of primitive shells : 45
total number of contracted shells : 360
total number of cartesian basis functions : 1404
total number of SCF-basis functions : 1152
integral neglect threshold : 0.24E-11
integral storage threshold THIZE : 0.10E-04
integral storage threshold THIME : 5
RI-J AUXILIARY BASIS SET information:
we will work with the 1s 3p 5d 7f 9g ... basis set
...i.e. with spherical basis functions...
type atoms prim cont basis
---------------------------------------------------------------------------
c 12 70 49 universal [6s4p3d1f1g|12s5p4d2f1g]
h 12 16 11 universal [3s1p1d|5s2p1d]
---------------------------------------------------------------------------
total: 24 1032 720
---------------------------------------------------------------------------
total number of primitive shells : 32
total number of contracted shells : 240
total number of cartesian basis functions : 876
total number of SCF-basis functions : 720
symmetry group of the molecule : c1
the group has the following generators :
c1(z)
1 symmetry operations found
there are 1 real representations : a
maximum number of shells which are related by symmetry : 1
------------------
density functional
------------------
Becke-3-Parameter hybrid functional: B3-LYP
exchange: 0.8*LDA + 0.72*B88 + 0.2*HF
correlation: 0.19*LDA(VWN) + 0.81*LYP
iterations will be done with small grid
spherical integration : Lebedev's spherical grid
spherical gridsize : 5
i.e. gridpoints : 590
value for diffuse not defined
radial integration : Chebyshev 2nd kind (scaling 3)
radial gridsize : 8
integration cells : 24
partition function : becke
partition sharpness : 3
biggest AO integral is expected to be 5.262544080
------------------------
nuclear repulsion energy : 629.061737538
------------------------
-----------------
-S,T+V- integrals
-----------------
1e-integrals will be neglected if expon. factor < 0.238031E-12
Difference densities algorithm switched on.
The maximal number of linear combinations of
difference densities is 20 .
DIIS switched on: error vector is FDS-SDF
Max. Iterations for DIIS is : 4
DIIS matrix (see manual)
Scaling factor of diagonals : 1.200
threshold for scaling factor : 0.000
scf convergence criterion : increment of total energy < .1000000D-06
and increment of one-electron energy < .1000000D-03
MOs are in ASCII format !
mo occupation :
irrep mo's occupied
a 1152 42
number of basis functions : 1152
number of occupied orbitals : 42
reading orbital data $scfmo from file mos
orbital characterization : expanded
virtual MOs provided and orthogonalized by Cholesky decomposition
automatic virtual orbital shift switched on
shift if e(lumo)-e(homo) < 0.10000000
------------------------
RI-J - INFORMATION
------------------------
Contributions to RI integral batches:
neglected integral batches: 13039
direct contribution: 38593
memory contribution: 13348
Memory core needed for (P|Q) and Cholesky 4 MByte
Memory core minimum needed except of (P|Q) 1 MByte
Total minimum memory core needed (sum) 5 MByte
****************************************
Memory allocated for RI-J 368 MByte
****************************************
DSCF restart information will be dumped onto file mos
Starting SCF iterations
Overall gridpoints after grid construction = 114189
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
1 -462.76998066830 -1852.4017515 760.57003328 0.000D+00 0.237D-11
Exc = -54.3418580931 Coul = 827.790865307
exK = -12.8789739376
N = 83.999861595
current damping = 0.300
max. resid. norm for Fia-block= 4.972D-01 for orbital 14a
max. resid. fock norm = 4.248D+01 for orbital 934a
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
2 -464.25952120760 -1874.8112773 781.49001858 0.145D+03 0.237D-11
Exc = -56.0234961703 Eck = 837.513514755
N = 83.999927448
current damping = 0.250
Norm of current diis error: 2.9008
max. resid. norm for Fia-block= 7.004D-02 for orbital 13a
max. resid. fock norm = 1.533D-01 for orbital 70a
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
3 -464.36341842212 -1869.5371526 776.11199662 0.606D+02 0.175D-11
Exc = -55.8661987655 Eck = 831.978195388
N = 83.999936630
current damping = 0.200
Norm of current diis error: 1.4969
max. resid. norm for Fia-block= 2.778D-02 for orbital 23a
max. resid. fock norm = 3.609D-02 for orbital 23a
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
4 -464.39301936418 -1873.5705724 780.11581549 0.977D+01 0.167D-11
Exc = -56.0566764334 Eck = 836.172491922
N = 83.999944236
current damping = 0.250
Norm of current diis error: 0.30891
max. resid. norm for Fia-block= 7.064D-03 for orbital 40a
max. resid. fock norm = 1.235D-02 for orbital 1147a
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
5 -464.39411208778 -1873.1112574 779.65540773 0.215D+01 0.123D-11
Exc = -56.0578033446 Eck = 835.713211075
N = 83.999948759
current damping = 0.300
Norm of current diis error: 0.16916
max. resid. norm for Fia-block= 3.307D-03 for orbital 41a
max. resid. fock norm = 8.877D-03 for orbital 1147a
mo-orthogonalization: Cholesky decomposition
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
6 -464.39455645028 -1873.1122018 779.65590777 0.583D+00 0.109D-11
Exc = -56.0556637591 Eck = 835.711571525
N = 83.999948631
current damping = 0.350
Norm of current diis error: 0.47262E-01
max. resid. norm for Fia-block= 8.593D-04 for orbital 40a
max. resid. fock norm = 3.590D-03 for orbital 216a
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
7 -464.39459159106 -1873.1172024 779.66087328 0.329D+00 0.105D-11
Exc = -56.0549241657 Eck = 835.715797441
N = 83.999948861
current damping = 0.200
Norm of current diis error: 0.10878E-01
max. resid. norm for Fia-block= 2.587D-04 for orbital 27a
max. resid. fock norm = 2.269D-03 for orbital 216a
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
8 -464.39459280386 -1873.1485946 779.69226424 0.195D+00 0.993D-12
Exc = -56.0567618643 Eck = 835.749026106
N = 83.999949027
current damping = 0.100
Norm of current diis error: 0.69219E-02
max. resid. norm for Fia-block= 1.173D-04 for orbital 39a
max. resid. fock norm = 8.811D-04 for orbital 292a
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
9 -464.39459349489 -1873.1320139 779.67568287 0.208D+00 0.958D-12
Exc = -56.0559238699 Eck = 835.731606740
N = 83.999949035
current damping = 0.150
Norm of current diis error: 0.14810E-02
max. resid. norm for Fia-block= 2.941D-05 for orbital 41a
max. resid. fock norm = 1.438D-03 for orbital 292a
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
10 -464.39459351718 -1873.1352195 779.67888846 0.201D+00 0.936D-12
Exc = -56.0560075273 Eck = 835.734895988
N = 83.999949033
current damping = 0.200
Norm of current diis error: 0.85515E-03
max. resid. norm for Fia-block= 1.339D-05 for orbital 41a
max. resid. fock norm = 1.276D-03 for orbital 216a
mo-orthogonalization: Cholesky decomposition
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
11 -464.39459352402 -1873.1345997 779.67826862 0.207D+00 0.887D-12
Exc = -56.0560016912 Eck = 835.734270315
N = 83.999949040
current damping = 0.250
Norm of current diis error: 0.26779E-03
max. resid. norm for Fia-block= 5.748D-06 for orbital 41a
max. resid. fock norm = 9.798D-04 for orbital 216a
ENERGY CONVERGED !
Overall gridpoints after grid construction = 368523
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
12 -464.39459673160 -1873.1344080 779.67807373 0.109D+00 0.834D-12
Exc = -56.0559961112 Eck = 835.734069842
N = 83.999995742
current damping = 0.100
Norm of current diis error: 0.10678E-03
max. resid. norm for Fia-block= 7.888D-06 for orbital 33a
max. resid. fock norm = 3.783D-03 for orbital 216a
End of SCF iterations
convergence criteria satisfied after 12 iterations
------------------------------------------
| total energy = -464.39459673160 |
------------------------------------------
: kinetic energy = 462.23698088144 :
: potential energy = -926.63157761304 :
: virial theorem = 1.99535391698 :
: wavefunction norm = 1.00000000000 :
..........................................
<geterg> : there is no data group $energy
<skperg> : $end is missing
orbitals $scfmo will be written to file mos
irrep 38a 39a 40a 41a 42a
eigenvalues H -0.34204 -0.26332 -0.25315 -0.25003 -0.24163
eV -9.3074 -7.1653 -6.8886 -6.8037 -6.5751
occupation 2.0000 2.0000 2.0000 2.0000 2.0000
irrep 43a 44a 45a 46a 47a
eigenvalues H -0.01554 -0.01074 -0.01016 -0.00550 -0.00027
eV -0.4228 -0.2923 -0.2765 -0.1497 -0.0072
==============================================================================
electrostatic moments
==============================================================================
reference point for electrostatic moments: 0.00000 0.00000 0.00000
nuc elec -> total
------------------------------------------------------------------------------
charge
------------------------------------------------------------------------------
84.000000 -84.000000 0.000000
------------------------------------------------------------------------------
dipole moment
------------------------------------------------------------------------------
x 79.367242 -79.367224 0.000018
y 0.000367 -0.000366 0.000001
z 277.791231 -277.791436 -0.000205
| dipole moment | = 0.0002 a.u. = 0.0005 debye
------------------------------------------------------------------------------
quadrupole moment
------------------------------------------------------------------------------
xx 566.780538 -615.718905 -48.938367
yy 380.765157 -429.315839 -48.550682
zz 1861.767389 -1921.985465 -60.218076
xy -0.891919 0.901208 0.009289
xz 630.117393 -629.442455 0.674939
yz -4.987954 4.939007 -0.048947
1/3 trace= -52.569041
anisotropy= 11.538162
==============================================================================
HOMO-LUMO Separation
HOMO : -0.24162879 H = -6.57506 eV
LUMO : -0.01553732 H = -0.42279 eV
HOMO-LUMO gap: 0.22609147 H = +6.15227 eV
==============================================================================
------------------------------------------------------------------------
total cpu-time : 20 hours 54 minutes and 32 seconds
total wall-time : 23 minutes and 42 seconds
------------------------------------------------------------------------
**** ridft : all done ****
2022-01-31 16:27:40.589
ridft ended normally
Hope this helps to all.