Author Topic: ricc2 excited state calc: Missing Laplace input for cc_1den with R1 or RE1  (Read 1695 times)


  • Newbie
  • *
  • Posts: 3
  • Karma: +0/-0

I'm trying to perform ricc2 (sos-cc2) excited state calculations (energy calculation for 5 states and geometry optimization of the lowest one) for a system of 58 atoms. Unfortunately, I get the following error:
                    ========   CC DENSITY MODULE   ========

                      current wave-function model: CC2

  calculating     3 eta densities

   the non-canonical algorithm will be used for all densities

    density nr.      cpu/min        wall/min    L     R

 internal module stack:

 fatal error for MPI rank    1

 Missing Laplace input for cc_1den with R1 or RE1.
 ricc2 ended abnormally
error in gradient step (1)

What does Laplace input for cc_1den refer to??

The same routine worked quite well for a system of 20 atoms, so my immediate suspicion was that it might have something to do with memory.

Any help would be greatly appreciated.



  • Developers
  • Jr. Member
  • *
  • Posts: 13
  • Karma: +0/-0
Dear Mallikarjun,

can you also provide your control file? Judging from the error message the $laplace data group is missing, which is needed for SOS-CC2 and SOS-MP2. Add for example


to your control file and see if your calculation then goes through. If still the same error message pops up, it is likely a bug and I suggest to contact the Turbomole support. I also suggest that your read chapter "9.6  Laplace-transformed SOS-RI-MP2..." in the Turbomole documentation for further information. It briefly describes how the "Laplace-Trick" is used to replace the energy denominator which an equivalent Laplace transformed expression
« Last Edit: January 30, 2020, 04:15:26 PM by gunnar.schmitz »


  • Newbie
  • *
  • Posts: 3
  • Karma: +0/-0
Thank you for the kind reply.  I realised that, and am now running two jobs, one with conv=4 and the other with conv=5. If this does not work, would it make sense to completely get rid of the SOS and just try to see if CC2 without SOS works?

Here is my new control file:

$operating system unix
$symmetry c1
$redundant    file=coord
$user-defined bonds    file=coord
$coord    file=coord
 internal   on
 redundant  on
 cartesian  off
 global     off
 basis      off
c  1-4,7,9-11,13,15-17,19-21,24-40                                             \
   basis =c aug-cc-pVDZ                                                        \
   cbas  =c aug-cc-pVDZ
n  5-6,8,12,14,18,22-23                                                        \
   basis =n aug-cc-pVDZ                                                        \
   cbas  =n aug-cc-pVDZ
h  41-58                                                                       \
   basis =h aug-cc-pVDZ                                                        \
   cbas  =h aug-cc-pVDZ
$basis    file=basis
$scfmo   file=mos
$closed shells
 a       1-133                                  ( 2 )
$scfiterlimit       130
$scfconv        7
$thize     0.10000000E-04
$thime        5
$scfdamp   start=0.300  step=0.050  min=0.100
 unit=30       size=0        file=twoint
$maxcor    5000 MiB  per_core
$scforbitalshift  automatic=.1
   cartesian  on
   basis      off
   global     off
   hessian    on
   dipole     on
   nuclear polarizability
$interconversion  off
   interpolate  on
   statistics    5
   ahlrichs numgeo=0  mingeo=3 maxgeo=4 modus=<g|dq> dynamic fail=0.3
   threig=0.005  reseig=0.005  thrbig=3.0  scale=1.00  damping=0.0
$forceinit on
$energy    file=energy
$grad    file=gradient
$forceapprox    file=forceapprox
$denconv     0.10000000E-06
$cbas    file=auxbasis
  geoopt model=cc2       state=(s1)
  sos   cos= 1.30000
  fop unrelaxed_only operators=diplen
  sop operators=(diplen,diplen)
  irrep=a nexc=5
$last step      ricc2
$last SCF energy change = 0.87090939E-08
$charge from dscf
          0.000 (not to be modified here)
$dipole from dscf
  x    -0.00034122219716    y     0.00013060160870    z    -0.00003075498512    a.u.
   | dipole | =    0.0009319488  debye
$orbital_max_rnorm 0.12832582988654E-03
$excitation_energies_CCS_____1^a___ file=exstates
$excitation_energies_CC2_____1^a___ file=exstates
$t2_norm_of_re0_CC2_____1^a___ file=exstates
$t2_norm_of_le0_CC2_____1^a___ file=exstates
$<le0|re0>-overlap_CC2_____1^a___ file=exstates
$<le01|re01>-overlap_CC2_____1^a___ file=exstates
$<le02|re02>-overlap_CC2_____1^a___ file=exstates


  • Developers
  • Jr. Member
  • *
  • Posts: 13
  • Karma: +0/-0
If you get the SOS-CC2 calculation through in small time, you can of course also try to do CC2. SOS-CC2 scales as O(N^4), while standard CC2 scales as O(N^5). So there are computational benefits for larger systems. For smaller systems I would suggest using CC2 and for small systems SOS-CC2 might even be slower due to a larger prefactor.

In the manual you can find for SOS-MP2 an estimator for the break even point of SOS-MP2 and MP2. If the number of your occupied orbitals are 6 times larger than the number of your Laplace points you can start to expect savings. Maybe this also helps you in your considerations.


  • Newbie
  • *
  • Posts: 3
  • Karma: +0/-0
Thank you. I'll leave an update once something works, for future reference of other users.