News and Announcements > News and Announcements

Turbomole 7.3 released

(1/1)

uwe:
TURBOMOLE V7.3 has been released (July 2018)

New features:

* PNO-CCSD(T0) and PNO-CCSD(T) energies for closed-shell systems [1]
* new DFT-D4 dispersion correction based on xTB [2]
* modernized NMR (with RI-J, COSMO, meta-GGAs, low-order scaling HF-exchange, SMP parallelization) [3]
* VCD spectra using COSMO
* periodic DFT with larger basis sets (treatment of linear dependency)
* two-photon absorption cross sections and analytic frequency-dependent hyperpolarizabilities with TDDFT/TDHF [4]
* X2C gradients for 1- and 2-component DFT, full X2C and DLU-X2C [5]
* vibronic absorption/emission spectra (new module: radless) [6]
* CC2 vertical excited states with COSMO [7]
* NTO (natural transition orbitals) for TDDFT
* RI-GW based on dRPA (very fast GW and BSE) [8]Efficiency:

* GW and Bethe-Salpeter based on fast dRPA
* support of RI-J and linear scaling HF exchange in NMR calculations
* PNO-MP2 closed shell energy calculations significantly more efficientUsability:

* new scripts for parallel execution which recognize the most frequently used queuing systems
* TmoleX 4.4 now supports
* PNO-MP2, PNO-CCSD, PNO-CCSD(T0) and PNO-CCSD(T)
* DFT-D4 dispersion correction
* X2C relativistic two-component treatment for spin-orbit coupling terms, and new X2C basis sets
* Fukui indices and functions (calculation and visualization)
* movie exports to mp4 files
* B97-3c functional


* G. Schmitz, C. Hättig, D. Tew, Phys. Chem. Chem. Phys. 16, 22167-22178 (2014),
Explicitly correlated PNO-MP2 and PNO-CCSD and their application to the S66 set and large molecular systems,
DOI: https://doi.org/10.1039/C4CP03502J


* E. Caldeweyher, C. Bannwarth, S. Grimme, J. Chem. Phys., 147, 034112, (2017)
Extension of the D3 dispersion coefficient model,
DOI: https://doi.org/10.1063/1.4993215
E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Grimme, J.Chem. Phys. 2018, in progress.
C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2018, in progress.


* K. Reiter, F. Mack, F. Weigend, J. Chem. Theory Comput.,  14(1), 191-197, (2018)
Calculation of Magnetic Shielding Constants with meta-GGA Functionals Employing the Multipole-Accelerated Resolution of the Identity: Implementation and Assessment of Accuracy and Efficiency
DOI: https://doi.org/10.1021/acs.jctc.7b01115


* S. M.  Parker, D. Rappoport, F. Furche, J. Chem. Theory Comput., 14, 807-819, (2018)
Quadratic Response Properties from TDDFT: Trials and Tribulations,
DOI: https://doi.org/10.1021/acs.jctc.7b01008


* Y. J. Franzke, N. Middendorf, F. Weigend, J. Chem. Phys., 148, 104110, (2018)
Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory
DOI: https://doi.org/10.1063/1.5022153


* E. Tapavicza, F. Furche, D. Sundholm, J. Chem. Theory Comput., 12(10), 5058-5066, (2016)
Importance of Vibronic Effects in the UV–Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion
DOI: https://doi.org/10.1021/acs.jctc.6b00720


* S. K. Khani, A. M. Khah, C. Haettig, Phys. Chem. Chem. Phys., 20, 16354-16363, (2018)
COSMO-RI-ADC(2) excitation energies and excited state gradients
DOI: https://doi.org/10.1039/C8CP00643A


* C. Holzer, W. Klopper, to be published

Navigation

[0] Message Index

Go to full version